Primes in the discriminant of curves of genus 3

Elisa Lorenzo García
Université de Rennes 1

Bristol
28 March 2017

As you may know ...

$$
g=0
$$

conics: $Q \simeq \mathbb{P}^{1}$

$$
y^{2}=x z
$$

dim 0

$$
g=1
$$

elliptic curves
$y^{2}=x^{3}+a x+b$
dim 1, j-invariants

$$
H_{D}(x)=\prod_{\mathrm{ECM} \text { by } \mathcal{O}_{D}}(x-j(E)) \in \mathbb{Z}[x]
$$

Genus 2 curves

They are still hyperelliptic curves
$y^{2}=f(x)$ with $\operatorname{deg}(f)=5,6$.

The moduli space has dimension 3 : Igusa invariants.

Genus 2 curves

They are still hyperelliptic curves $y^{2}=f(x)$ with $\operatorname{deg}(f)=5,6$.

The moduli space has dimension 3: Igusa invariants.
$H_{\mathcal{O}}^{i}(x)=\prod_{\text {c¢м by }}\left(x-j_{i}(C)\right) \in \mathbb{Q}[x]$
Denom. \rightarrow primes of bad reduction. (Goren,Lauter,Viray).

Genus 2 curves

They are still hyperelliptic curves
$y^{2}=f(x)$ with $\operatorname{deg}(f)=5,6$. (Goren,Lauter,Viray).

The moduli space has dimension 3: Igusa invariants.

Genus 2 curves

They are still hyperelliptic curves $y^{2}=f(x)$ with $\operatorname{deg}(f)=5,6$.
$H_{\mathcal{O}}^{i}(x)=\prod_{C \text { CM by }}\left(x-j_{i}(C)\right) \in \mathbb{Q}[x]$
Denom. \rightarrow primes of bad reduction. (Goren,Lauter,Viray).

The moduli space has dimension 3: Igusa invariants.

It makes sense to talk about the reduction of the invariants (Liu)

Curves of genus 3

$y^{2}=f(x), \operatorname{def}(f)=7,8, \operatorname{dim} 5$
Shioda invariants for hyperelliptic curves
$F(x, y, z)=0$ plane quartics
Dixmier-Ohno invariants: dim 6

Curves of genus 3

Hyperelliptic reduction: $\chi_{18}=0$ Bad reduction: $\chi_{18}=\Sigma_{140}=0$
$y^{2}=f(x), \operatorname{def}(f)=7,8, \operatorname{dim} 5$
Shioda invariants for hyperelliptic curves

$F(x, y, z)=0$ plane quartics
Dixmier-Ohno invariants: dim 6

Curves of genus 3: primes in the discriminant

(Joint work with A. Fiorentino, R. Lercier, C. Ritzenthaler, J. Sijsling)

- Bad reduction: primes in the conductor.

Curves of genus 3: primes in the discriminant

(Joint work with A. Fiorentino, R. Lercier, C. Ritzenthaler, J. Sijsling)

- Bad reduction: primes in the conductor.
- Hyperelliptic reduction:

$$
F=Q^{2}+p H
$$

Klein quartic: $x^{3} y+y^{3} z+z^{3} x=0 \rightarrow x^{4}+y^{4}+z^{4}+3 \frac{-1+\sqrt{-7}}{2}\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)=0$

Curves of genus 3: primes in the discriminant

(Joint work with A. Fiorentino, R. Lercier, C. Ritzenthaler, J. Sijsling)

- Bad reduction: primes in the conductor.
- Hyperelliptic reduction:

$$
F=Q^{2}+p H
$$

Klein quartic: $x^{3} y+y^{3} z+z^{3} x=0 \rightarrow x^{4}+y^{4}+z^{4}+3 \frac{-1+\sqrt{-7}}{2}\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)=0$

- Extra primes: \rightarrow minimal discriminant

Hyperelliptic curves of genus 3

For hyperelliptic curves: bad reduction has co-dimension 1.

$$
H_{\mathcal{O}}^{i}(x)=\prod_{\text {C CM by } \mathcal{O}}\left(x-j_{i}(C)\right) \in \mathbb{Q}[x]
$$

Primes in denominators \Longleftrightarrow primes of bad reduction. Bounds in:
Bouw, Cooley, Lauter, L., Manes, Newton, Ozman 2015, Kilicer, Lauter, L. Newton, Ozman, Streng 2017

Hyperelliptic curves of genus 3

For hyperelliptic curves: bad reduction has co-dimension 1.

$$
H_{\mathcal{O}}^{i}(x)=\prod_{\text {C CM by } \mathcal{O}}\left(x-j_{i}(C)\right) \in \mathbb{Q}[x]
$$

Primes in denominators \Longleftrightarrow primes of bad reduction. Bounds in:

Bouw, Cooley, Lauter, L., Manes, Newton, Ozman 2015, Kilicer, Lauter, L. Newton, Ozman, Streng 2017

Exponents \longrightarrow sol. to the embedding problem
Ionica, Kilicer, Lauter, L., Manzateanu, Massierer, Vincent; in progress

$$
\mathcal{O}=\operatorname{End}(J) \hookrightarrow \operatorname{End}(\bar{J}) \otimes \mathbb{Q} \simeq \mathcal{M}_{3}\left(B_{p, \infty}\right)
$$

Hyperelliptic curves of genus 3

For hyperelliptic curves: bad reduction has co-dimension 1.

$$
H_{\mathcal{O}}^{i}(x)=\prod_{\text {C CM by } \mathcal{O}}\left(x-j_{i}(C)\right) \in \mathbb{Q}[x]
$$

Primes in denominators \Longleftrightarrow primes of bad reduction. Bounds in:

Bouw, Cooley, Lauter, L., Manes, Newton, Ozman 2015, Kilicer, Lauter, L. Newton, Ozman, Streng 2017

Exponents \longrightarrow sol. to the embedding problem

Ionica, Kilicer, Lauter, L., Manzateanu, Massierer, Vincent; in progress

$$
\mathcal{O}=\operatorname{End}(J) \hookrightarrow \operatorname{End}(\bar{J}) \otimes \mathbb{Q} \simeq \mathcal{M}_{3}\left(B_{p, \infty}\right)
$$

Results à la Deuring: $E / \mathbb{F}_{q}, u / \mathbb{F}_{q} \rightarrow \tilde{E} / K, \tilde{u} / K$

Thank you!

